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Abstract. It is shown, using only elementary operator algebra, that an open quantum system
coupled to its environment will have a subdynamics (reduced dynamics) as an exact consequence
of the reversible dynamics of the composite system only when the states of system and
environment are uncorrelated. Furthermore, it is proved that for a finite temperature the KMS
condition for the lowest-order correlation function cannot be reproduced by any type of linear
subdynamics except the reversible Hamiltonian one of a closed system. The first statement
can be seen as a particular case of a more general theorem of Takesaki on the properties
of conditional expectations in von Neumann algebras. The concept of subdynamics used here
allows for memory effects, no assumption is made of a Markov property. For dynamical systems
based on commutative algebras of observables the subdynamics always exists as a stochastic
process in the random variable defining the open subsystem.

1. Introduction

The problem considered here is how the dynamics of a small quantum system interacting
with its environment (the heat bath or reservoir) can be given a reduced description involving
only the degrees of freedom of the small system. It is assumed that the closed system
(composed of the observed small system and the reservoir) has a reversible, deterministic
Hamiltonian dynamics, while the evolution of the small system is expected to have
irreversible and random properties. Various names, likesubdynamicsor reduced dynamics,
are in use for this concept. Often they are understood to mean that the dynamics is governed
by a master equation containing parameters describing the reservoir, but acting only on the
dynamical variables of the small system.

Here a more general concept of subdynamics is used which allows for memory effects.
The mathematical construction is inspired by the classical theory of stochastic processes. It
is based on the physical assumption that the experimentally accessible correlation functions
for the small subsystem can be expressed as averages over its initial partial state. The
standard models used in this field, like those defined by master equations, are all of this
type, but they often have additional simplifying features, e.g. a Markov property, which
will not be assumed here.

In the commutative case there isalways a subdynamics in the sense used here. This is
due to the properties of marginal distributions (partial states) and conditional expectations in
commutative probability. The subdynamics is a stochastic process for the random variables
defining the small subsystem, and the correlation functions can be written as expectations
involving only these variables. The precise form of the expectations will, of course, depend
on the properties of the reservoir. This classical framework is sketched in section 2 in order
to put the basic ideas into a form suited to the physical picture.
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The basic result shown in section 3 is that, when the probability measures are replaced
by quantum density operators and the measurable functions by quantum observables, an
analogous construction is possible only in rather trivial cases. When the algebra of
observables for the open system isB(K) (all bounded operators in a Hilbert spaceK) the
conditional expectation we need will exist precisely when the initial state of the composite
system is a tensor product of the partial states. This product form must then be preserved
by the evolution in order that a properly defined subdynamics shall exist for any choice of
initial time.

This result can also be derived from a theorem of Takesaki which restricts the existence
of conditional expectations for non-commutative operator algebras which leave invariant a
faithful normal state [1]. Takesaki’s theorem causes long-known difficulties in extending
the concept of a stochastic process to a non-commutative setting [2–5], and one can see the
problem considered here as a particular instance. Takesaki’s theorem, which also applies
to strictly infinite systems, is based on the theory of von Neumann algebras and modular
Hilbert algebras and demands a formidable mathematical apparatus. However, the main idea
behind it is elementary, and here we will use only the basics of operator algebras which
are sufficient to deal with finite systems. In the appendix a simplified version of Takesaki’s
theorem is sketched.

If a subdynamics exists it does (by definition) reproduce the correlation functions of all
orders. In section 4 we ask if there can exist a subdynamics satisfying the less restrictive
condition of reproducing only the lowest-order correlation function for all values of the time
parameter. If we assume the KMS condition for the time dependence of this function, we
find that the answer is negative unless either the small system is closed or the temperature
is infinite.

In section 5 there are references to some earlier work on similar problems. It is
argued that the subdynamics picture can only be expected to hold as an approximation with
restrictions on the time scales involved. There is a brief discussion on possible consequences
in applications to physical relaxation processes.

2. The commutative case

We will first outline how the subdynamics is introduced in the classical (commutative)
case. This is a well known part of the theory of stochastic processes, but the standard
formalism does not relate to the physical picture of open systems. Here this scheme will
be reformulated to make it similar to that used in the quantum physics context. In order
to keep this as short as possible the standard measure theory disclaimer ‘for almost all. . . ’
will be skipped.

The observed open system is here calledS1 and the reservoirS2. The composite system
S = S1+S2 is described by a direct product phase space� = �1×�2, and a direct product
algebra of observablesA = A1 ⊗ A2 which are measurable functions on the phase space
(with respect to a given reference measure). The intrinsic and reversible dynamics of the
composite system is represented by maps

T : ω = (ω1, ω2) 7→ T (ω) = (ω′
1, ω

′
2).

The states on the composite system are probability measures on� which we write as

µ =
∫
�

dµ(ω)δω.

Let a fixed reference measureµ be given as an initial state which defines the observable
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probability distributions. It is not necessarily stationary under the dynamics, but we must
assume that the total probability is preserved∫

�

dµ(T (ω)) =
∫
�

dµ(ω) = 1.

The partial states for the two subsystems are the marginal distributionsµ1, µ2 obtained
by partial integration. Then there is for eachω1 ∈ �1, which is in the support ofµ1, a
conditional probability measure on�2, calledµ2(·|ω1), defined in such a way that the state
µ on the composite system is recovered by partial integration∫

�

dµ(ω)f (ω) =
∫
�1

dµ1(ω1)

∫
�2

dµ2(ω2|ω1)f (ω1, ω2).

For every stateρ of the systemS1, the support of which is contained in that ofµ1, we can
define a state of the composite system

J (ρ) =
∫
�

dρ(ω1) dµ2(ω2|ω1)δω. (2.1)

Clearly the mapJ is uniquely defined by a faithful stateµ and it holds thatJ (µ1) = µ. For
any stateρ of S1, the stateµ′ = J (ρ) defines a mapJ ′ which is equal toJ or a restriction
of it. When the stateµ is not stationary then the mapJ will also be time dependent, but
this will not appear explicitly in the notation.

It is convenient to introduce a notation(R) for the map which is the partial integration
over�2. The relations above can then be written in the following form, where◦ denotes
the composition of maps:

R ◦ J = I := the identity map (2.2)

J ◦ R(µ) = µ if J is defined byµ. (2.3)

The symbol 1l2 denotes the function which is equal to 1 everywhere on�2, and we can then
identify A1 ⊗ 1l2 with A1 as a subalgebra ofA. For anyY ∈ A1 the partial integration map
clearly satisfiesR((Y ⊗ 1l2)µ) = YR(µ) and (2.1) gives the corresponding relation forJ :

(Y ⊗ 1l2)J (ρ) = J (Yρ). (2.4)

We also introduce a positive mapK : A → A1 which is uniquely defined by the following
relation for all statesρ of S1 and allX ∈ A:

J (ρ)[X] = J (ρ)[K(X)] = ρ[K(X)]. (2.5)

This relation restricted toA1 and (2.2) says that

K(Y ⊗ 1l2) = Y ⊗ 1l2 (2.6)

for all Y ∈ A1, which implies thatK ◦ K = K. From (2.4) we find that for allY ∈ A1,
X ∈ A

K[(Y ⊗ 1l2)X] = (Y ⊗ 1l2)K(X). (2.7)

The relations (2.6) and (2.7) mean, by definition, thatK is a conditional expectation[1].
The dynamical maps are defined on the states of the composite system as follows,

T ∗(µ) =
∫
�

dµ(ω)δT (ω)

and we can define reduced dynamical maps on the states ofS1 as follows:

T ∗
1 (ρ) = R ◦ T ∗ ◦ J (ρ). (2.8)
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The mapsT ∗ on the space of states are related to the corresponding dynamical mapsT on
the observables through the standard duality

T ∗(µ)[X] = µ[T (X)].

The definition (2.8) is then equivalent to the relation

K ◦ T (Y ) = T1(Y )⊗ 1l2 (2.9)

for all Y ∈ A1, and together with (2.5) and (2.7) it implies that the lowest-order correlation
function satisfies

µ[X†T (Y †Y )X] = µ1[X†T1(Y
†Y )X] (2.10)

for all X, Y ∈ A1. Thus this expectation value is reduced to an expression involving only
the initial state and observables of the subsystemS1.

The multitime correlation functions are defined by combining the actions of observables
in A1 with the dynamics. The observableY ∈ A1 in (2.10) is replaced by a product of time
translates of elements inA1

Y = T n(Xn) · T n−1(Xn−1) · · · T (X1)

which is not, of course, itself inA1 in general. However, there is a unique positive operator
T1(Y

†Y ) ∈ A1 defined by (2.9) and satisfying (2.10). The mapJ (or K) then defines a
subdynamics, by which we mean precisely that all the correlation functions can be expressed
as expectations defined by the initial partial state ofS1 as in equation (2.10). A stochastic
process is defined by the set of all correlation functions (the Kolmogorov construction), so
we can identify it with the subdynamics. Ifµ is stationary, thenJ is independent of time,
and the subdynamics onS1 will be a stationary stochastic process.

What conditions willJ have to satisfy in order that the process shall be Markovian? A
sufficient condition is the following stronger version of (2.8):

J ◦ T ∗
1 = T ∗ ◦ J. (2.11)

Then all probability distributions for sequences of observations of the subsystemS1 can be
constructed using only the stateµ1, the mapT1 and the mapsE defining the observations.
Here each mapE consists of a multiplication by a positive element inA1 and it is clear from
(2.7) that all such maps commute withK (their duals commute withJ ). The proof then
follows by the following induction argument. Consider the correlation function (probability
for a sequence ofn observations with given outcomes)

µ[E1 ◦ T ◦ E2 · · · ◦ T ◦ En(I)].
Rewrite this as

T ∗ ◦ J ◦ E∗
1(µ1)[E2 ◦ T · · · ◦ T ◦ En(I)]

and use (2.11) to obtain that this expression equals

J ◦ T ∗
1 ◦ E∗

1(µ1)[E2 ◦ T ◦ E3 ◦ · · · ◦ T ◦ En(I)]
= T ∗ ◦ J ◦ E∗

2 ◦ T ∗
1 ◦ E∗

1(µ1)[E3 ◦ · · · ◦ T ◦ En(I)]
and finally, by iteration, this is equal to

µ1[E1 ◦ T1 ◦ E2 · · · ◦ T1 ◦ En(I)] (2.12)

which is the form of the probability for the Markov chain generated by the stochastic
operatorT1. If the system is irreducible, in the sense that is uniquely defined by the
observations on the subsystem, then (2.11) is also a necessary condition onJ .
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To sum up, we find from the construction above that a subdynamics always exists in the
commutative case, it is an exact consequence of the dynamics of the composite system and
it is non-trivial if this dynamics does not leave the subsystemS1 invariant. Furthermore,
it is stationary if it is constructed from a stationary state of the composite system, but the
Markov property is satisfied only under very restrictive conditions.

3. The quantum case

The picture given in the previous section can be extended to the quantum case in a
straightforward manner. The resulting quantum subdynamics has the structure introduced
earlier asquantum stochastic processesin [6, 7], but we will not need the details given
there. It is shown below that such a subdynamics will exist as an exact consequence of the
dynamics of the composite system only when the correlations in the state of the composite
system vanish.

For quantum mechanical systems we use a Hilbert spaceK = K1⊗K2 for the composite
system and an algebra of observables

A = A1 ⊗ A2

where we let the small system be fully quantum mechanical

A1 = B(K1)

while the algebraA2 can be arbitrary, possibly commutative. We let 1l denote the unit
operator and consider only (normal) states which are defined by density operators. It is
no real restriction to consider only finite-dimensional spaces as the simple operator algebra
methods used are those relevant for finite systems. Note that the restriction mapR of a
state toA1

R(ρ)[X] = ρ[X ⊗ 1l2]

is a partial trace on the density operators, which is a completely positive (CP) map. For the
definitions and mathematical properties of CP maps see, for example, Paulsen [8], for the
physical relevance see Kraus [9, 10] or Lindblad [11].

Assume that there is a projectionK : A → A1 ⊗ 1l2 satisfying (2.7), now in the
non-commutative version whereY acts either on the right or on the left. Such conditional
expectation maps always exist in finite dimensions and they are necessarily CP [1, 12]. Let
J be defined by (2.5), which means that it will satisfy (2.2), and that it is a CP map. Now
assume, in addition, that there is a faithful stateµ satisfying (2.23).

The statement to be proved is that under these assumptionsJ must be of the form

J (ρ) = ρ ⊗ µ2 (3.1)

for all statesρ of S1; hence the stateµ satisfying J ◦ R(µ) = µ is of product form
µ = µ1 ⊗ µ2. The proof is quite straightforward. From (2.7) follows directly that

K(X ⊗ Y ) = (X ⊗ 1l2) ·K(1l1 ⊗ Y ) = K(1l1 ⊗ Y ) · (X ⊗ 1l2).

As this holds for allX ∈ A1, it is clear thatK(1l1 ⊗ Y ) ∈ A1 commutes with all operators
in A1, hence in the quantum case this operator must be a multiple of the unit operator, and
consequently

K(1l1 ⊗ Y ) = µ2(Y )1l

which means thatJ is of the form (3.1).
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As we have already noted in the introduction, this statement is a simple version of
a celebrated result by Takesaki about the lack of non-trivial conditional expectations in
non-commutative operator algebras [1]. A translation of his statement to the present much
simplified set-up will now be given in order to show the relation with the argument above.

Given a faithful stateµ on the tensor product Hilbert space, consider the linear maps
K : A → A1 which satisfy, for allX,Z ∈ A1, Y ∈ A,

µ[XYZ] = µ[XK(Y)Z] = µ1[XK(Y)Z]. (3.2)

If such a map exists it satisfies (2.6) and (2.7), i.e. it is a conditional expectation, and
µ ◦ K = µ. It is clear that the map will be uniquely defined byµ, if it exists at all.
Furthermore, it must be completely positive due to the positive definiteness relation satisfied
by the correlation functions; for instance, for all sequences{Xj ∈ A1, Yj ∈ A}∑

j,k

µ1[X†
j K(Y

†
j Yk)Xk] > 0. (3.3)

This follows from the corresponding relation for the first element in (3.2). The theorem
of Takesaki then says that the mapK exists precisely whenA1 is left invariant by the
group of unitaries (the modular automorphism group) generated by the self-adjoint operator
A = lnµ,

exp(itA)A1 exp(−itA) = A1

which is equivalent to [A,X] ∈ A1 for all X ∈ A1. WhenA1 = B(K1), it is clear thatA
is determined only up to an arbitrary self-adjoint element inA2. Furthermore, every group
of automorphisms ofA1 is implemented by a group of unitary maps inK1, and this is
generated by a self-adjoint operator inA1. Consequently, the most general solution forA

is of the formA = A1 ⊗ 1l2 + 1l1 ⊗ A2, which means that the stateµ is of tensor product
form.

Up until now the construction of the subdynamics is based on a particular choice of
reference stateµ of product form. When this state is not stationary under the dynamics of
the composite system there is also a choice of a preferred initial time for the correlation
functions. If we demand that the construction of a subdynamics shall be possible for all
initial times, then it is clear that the time translates ofµ must also be of product form:

T ∗(µ1 ⊗ µ2) = µ′
1 ⊗ µ′

2.

Whether the state is stationary or not, the dynamics which can satisfy this condition is
severely restricted. The invariance of the spectrum of the density operators under the
reversible dynamics means that the transformation can act only in the degeneracy subspaces
of the product state. There are two extreme cases. First, the non-interacting case whereT

is a product of transformations acting on the factor spaces. Secondly, the fully degenerate
case where the quantum stateµ is a trace and is invariant under all unitaries. This case
can be interpreted as a model involving a heat bath of infinite temperature. There are also
intermediate situations, but they are really as non-generic as the rest. The general conclusion
is that there are few situations in which there can be a subdynamics as an exact consequence
of the reversible dynamics of the composite quantum system. Defining a subdynamics nearly
always involves an approximation scheme which neglects the correlations between observed
system and reservoir.

It is clear that (3.2) is consistent with (2.10) and (2.9), but it is possible that there is a
mapT1 : A1 → A1 which satisfies (2.10) even when there is no mapE satisfying (3.2).
This possibility will be considered in the next section. What we can say is that ifT1 exists
as a linear map (by which we mean that it is defined on the whole ofA1), then the positive
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definiteness of the correlation functions (3.3) does imply that it must be CP. It is impossible
to have for quantum systems a situation such as (2.10) defined by maps which are linear
but not CP.

Note that in papers such as [11, 13], where the CP property of the dynamical maps is a
crucial element, it is assumed as a mathematical starting point that there exists a (Markovian)
dissipative dynamics defined by linear maps on the full state space of the small system. It
is certainly always possible to construct a reservoir and a dynamics of the composite system
which will realize this process as a subdynamics, but such a construction need not have
all the physical properties we could ask for [14]. Similarly, in [6, 7] where a general non-
Markovian subdynamics constructed from CP maps was introduced, the existence of such
maps was part of the definition.

4. The KMS condition and subdynamics

The correlation functions (with a continuous time parameter) of quantum systems in thermal
equilibrium satisfy the KMS condition (4.3). If this condition is satisfied for all operators in
the composite system it implies the characteristic stability properties of canonical equilibrium
states (see Bratteli and Robinson [15], ch 5.4). It will be shown that it is not possible
to choose a subdynamics on the observables ofS1 in such a way that the lowest-order
correlation function satisfies the KMS condition, excepting two cases: when the dynamics
onS1 is conservative (that of a closed system) and when the ‘inverse temperature’β = h̄/k2

is zero.
Consider the correlation functions of the form (2.10), with the time parameter included:

R(X, Y ; t) = µ[X†Tt (Y )] = µ1[X†T1,t (Y )]. (4.1)

Here we assume thatX, Y ∈ A1 as before, and thatT1,t exists as a linear map onA1 defined
for t > 0. We extend the relation to negative values oft through

R(X, Y ; −t) = R(Y,X; t)∗.
This is actually a part of the following positive definite property of the correlation function:
for all Xk ∈ A1 and complexλk∑

k,l

λ∗
kR(Xk,Xl; tk − tl)λl > 0 (4.2)

which is a straightforward generalization of (3.3), again coming from the correlation
functions of the closed composite system.

The KMS condition reads ([15], ch 5.3): the correlation function has an analytic
continuation in the time parameter into the strip 06 Im z 6 β such that for all real
t

R(X, Y ; t) = R(Y †, X†; −t + iβ). (4.3)

Note that in the form it is used in [15] the argumentsX, Y ∈ A, but here it is essential that
they are restricted toA1. The conclusions we can draw are inevitably weaker.

We now use some ideas and facts from the theory of modular Hilbert algebras ([15],
ch 2.5). As long as it is enough to consider algebrasA1 = B(K1) in finite-dimensional
Hilbert spaces the derivations are quite elementary. If the assumption on the existence of
T1,t is correct andµ is a faithful state, then the correlation function can be represented in
the Hilbert spaceL = H1 ⊗ H1 in the following way. There is a vector� in L such that
for all X ∈ A1

〈�|X ⊗ 1l|�〉 = µ1(X).
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Furthermore, the vector is cyclic and separating forA1, which means that every vector
ψ ∈ L can be written in the formψ = (X ⊗ 1l|�〉 for a unique elementX ∈ A1. The
choice of� is not unique, but if the density operator is

µ1 =
∑
k

µk|k〉〈k|

for some complete orthonormal set{|k〉} and strictly positive eigenvalues{µk}, one choice
is

|�〉 =
∑
k

√
µk|k〉 ⊗ |k〉

and it is then easy to check the correctness of the statements above. Other choices are
unitarily equivalent. We also find the relation

(X ⊗ 1l)|�〉 = [1l ⊗ (µ
−1/2
1 Xµ

1/2
1 )T]|�〉 (4.4)

where T stands for matrix transpose in the orthonormal basis defining�.
From the sesquilinear structure of the correlation function (4.1), it follows that there is

a unique one-parameter familyV (s) of linear maps inL such thatV (0) = 1 and

R(X, Y ; t) = 〈�|X†V (t)Y |�〉.
Furthermore, the positive definite property (4.2) and Bochner’s theorem imply that there is
a normalized positive-operator-valued measureE(·) such that

V (t) =
∫ ∞

−∞
dE(u) exp(−iut).

The analytic continuation in the complex parametert can now be made inside this integral
(the operator will be unbounded in the general case of an infinite-dimensional Hilbert space,
of course). From the KMS condition we then find

〈�|X†V (t + iβ)Y |�〉 = 〈�|T1,t (Y )X
†|�〉.

But the right-hand side can be rewritten as follows, using the relation (4.4) twice

〈�|X†DT1,t (Y )|�〉 = 〈�|X†DV (t)Y |�〉
where we have introduced the positive operator

D = µ1 ⊗ µ−1
1 .

The cyclic and separating property of� implies that we can identify the operators

DV (t) = V (t + iβ)

and each Fourier component

D dE(u) = exp(βu) dE(u).

But D is a self-adjoint operator, its eigenspaces are orthogonal and consequentlyV (t) =
D−it/β which means that

T1,t (X) = µ
−it/β
1 Xµ

it/β
1 .

ThusT1,t represents a Hamiltonian dynamics onA1; it is the modular automorphism group
associated with the stateµ1.

These arguments used above fail precisely whenβ = 0. ThenD is proportional to the
unit operator and the KMS relation says that the state defining the correlation function is a
trace. ForT1,t we can have any family of CP maps satisfying

µ1 ◦ T1,t = µ1

and correlation functions generated by it will then have the required positive definite
property.
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5. Discussion

In the introduction we noted that the deep mathematical reason for the difficulties considered
here has already been approached in pure mathematics [1] and in the context of quantum
stochastic processes [2, 4, 5]. Recently the relation between the product form of the initial
state and the existence of CP dynamical maps describing relaxation processes was also
pointed out by Pechukas [16]. Pechukas suggested that the dynamical maps could be
properly defined on a subset of initial states for the open system even when the initial
state of the composite system is correlated. With the methods based on the correlation
functions used in this paper, one option is to restrict the observablesA1 of the open system
to a smaller subalgebra. Takesaki’s theorem will then allow a larger set of initial states.
This procedure would restrict the quantum observables and introduce by fiat some classical
property of the open system, but this line of thought has not been followed here.

A ‘solution’ which appears more physical is to accept that the description of relaxation
processes by any kind of subdynamics involves an approximation. Of course, it is an old
and established idea that a separation of time scales is necessary in describing dissipative
processes on the basis of reversible microscopic dynamics. What is not so well established
is the choice of quantities to be approximated. In the present formalism a natural choice
is the correlation functions up to some finite order and up to some finite resolution of the
time scale. A justification of such a procedure could only be given a firm foundation by
the solution of particular models. Here we can only give a few general arguments why
the choice of time scale is an essential ingredient. In a companion article the quantum
analogue of Gaussian stochastic processes, the quasifree processes on the CCR algebra, are
investigated [18]. There the conditions for having an exact subdynamics and for obtaining
a good approximation of the correlation functions can be given in some greater detail.

Describing equilibrium thermal fluctuations in a quantum system always involves a
natural time scaleβ = h̄/k2 defined by the heat bath. From section 4 we know that there
is no exact reproduction of even the lowest-order correlation function by any subdynamics,
but this does not exclude that there can be a good approximation on longer time scales.
Note that the standard weak coupling limit, often used to derive master equations, involves
a rescaling of the time parameter which will generally destroy the information about the
intrinsic time scales of the reservoir [19, 20].

In applications the type of subdynamics most often considered is that of the Markovian
kind. To be more precise, one generally assumes that the relaxation is given by a semigroup
of dynamical maps. Strictly speaking the semigroup property does not imply that the higher-
order correlations are given by the CP maps in analogy with the formula (2.12); the Markov
property is stronger than that of having a semigroup. (An exception to this general statement
is provided by the quasifree processes on the CCR algebra [7, 18].) The convergence of
the multitime correlation functions to the form suggested by (2.12) has been proved in the
appropriate limit [21]. Without such a result the higher-order correlation functions cannot
be found from the semigroup, and there is a weaker sense of the subdynamics reproducing
the exact dynamics of the composite system.

It has long been known that already the semigroup (exponential) relaxation cannot
hold strictly when the reservoir has a finite temperature, and this is again due to the non-
zero value ofβ [17, 22–25]. The failure is evident already at the lowest-order correlation
function. At sufficiently low temperatures relaxation processes in quantum systems will
always display some non-exponential effects, and the same holds for any finite temperature
at a sufficiently short time scale. It has also been shown that the thermal correlation functions
at a finite temperature has a deterministic property which is completely at variance with the
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randomness associated with Markov processes [14].
It could be an interesting open problem whether the effects of correlations in the

initial state and the consequent lack of a subdynamics can be seen in some experimentally
accessible quantities. One candidate suggested by [16] is as follows. It is known that the
properties of the dynamical semigroups of CP maps imply the following simple relation
between the longitudinal or population(T1) and transversal or phase(T2) relaxation times
of a spin in a heat bath:

2T1 > T2 (5.1)

(see e.g. [13]). Experimental manifestations of a breakdown of (5.1) are not known to
me. In recent years there has been a series of papers where models are shown to depart
from this expected relation when the weak coupling limit is abandoned [26–29]. However,
the derivation of (5.1) depends on having a semigroup of CP maps where the generator is
independent of time. Thus, there is an underlying assumption much stronger than that of
having a subdynamics of a general type. It would be interesting to have realistic situations
where the dynamical effects of the correlations in the initial state could be displayed without
depending on extra assumptions about stationarity and a semigroup evolution. That such
effects must exist is clear, the problem is whether they can be identified in the experimentally
observable properties of the correlation functions.
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Appendix

We will give a simplified proof of Takesaki’s theorem which works for finite quantum
systems without using any deep results from operator algebra theory. We start from a
set-up similar to that in section 4. The composite system is represented by an algebra
A = B(K) which acts on the first factor in the Hilbert spaceL = K ⊗ K. Again there is a
vector� ∈ L which is cyclic and separating for the algebraA with µ(X) = 〈�|X⊗ 1l|�〉,
and a positive operator1 satisfying

〈�|X1Y |�〉 = 〈�|YX|�〉 (A.1)

for all X, Y ∈ A, where we identifyX with X ⊗ 1l wherever appropriate. Assume
that there is a conditional expectationE : A → A1 with the desired properties. As
〈�|E(Y )|�〉 = 〈�|Y |�〉 andE(XE(Y )) = E(X)E(Y ), it must hold for allX, Y ∈ A that

〈�|E(X)Y |�〉 = 〈�|XE(Y )|�〉 = 〈�|E(X)E(Y )|�〉. (A.2)

Let P1 ∈ B(L) be the projection onto the subspaceL1 ⊂ L which is the closed linear span
of the set(A1 ⊗ 1l)|�〉. Clearly P1|�〉 = |�〉. The defining relation forE (3.2) is then
equivalent to the following identity for allX, Y ∈ A:

〈�|XE(Y )|�〉 = 〈�|XP1Y |�〉 (A.3)

and hence to the relationE(Y ) = P1YP1. Combining (A.1)–(A.3) and the fact that
1(X ⊗ 1l)1−1 = µXµ−1 ⊗ 1l (cf (4.4)) it is found that

〈�|XE(Y )|�〉 = 〈�|YP11X|�〉 = 〈�|E(X)Y |�〉 = 〈�|Y1P1X|�〉.
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From the cyclic property of� it follows that P11 = 1P1. HenceP1 commutes with the
spectral resolution of1 and it follows that

1−itP11
it = P1

and finally that

1−itA11
it = A1

which is the statement of the theorem.
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